微信扫码登录

其他登录方式

绑定手机号

注册

我同意用户协议

忘记密码

用户协议

绑定手机号

近期有不法分子打着爱盈利的旗号,制作“爱盈利”名称的App,并伪造爱盈利证件,骗取用户信任,以抖音点赞赚钱或其他方式赚钱为名义,过程中以升级会员获得高佣金为名让用户充值。
爱盈利公司郑重声明:我司没有研发或运营过任何名为“爱盈利”的APP,我司做任务赚钱类产品从没有让任何普通用户充值升级会员。我公司产品均在本网站可查询,请将网站拉至底部,点击“关于我们”可查看爱盈利相关产品与服务。
温馨提示:当遇到此类问题请拨打官方电话或添加官方微信,以免财产损失。爱盈利官网地址:www.aiyingli.com。
  • 推广与合作
X

关于用户流失你必须掌握数据运营

来源:香槟运营 4623

在用户运营的过程当中,数据运营起到非常重要的作用,那么,数据运营能为用户运营提供什么帮助呢?

关于用户流失你必须掌握数据运营

简单来说,用户流失率是指用户的流失数量与全部使用/消费产品(或服务)用户的数量的比例,是用户流失的定量表述,以及判断用户流失的主要指标,直接反映了产品的市场接受程度如何,以及运营工作的好坏。

一般来说,这个指标用在“订阅型产品”的情形居多,如信息订阅类App“锤子阅读”、绝大多数的在线SaaS产品,甚至传统的牛奶订购。由于留住当前的用户要比获取新用户来的划算,所以预测流失率的目标在于:预测用户将会在哪个时间点离开(在订阅期结束前),在合适的时间点对这些用户施加影响,挽留他们,如通过短信、邮件或APP消息推送,利用超低价商品吸引回访或者专属优惠券等,这些策略对于一些流失用户是很有效的!

接下来,笔者将利用简单的统计学知识,介绍一种基于用户不活跃记录的用户流失预测模型。该模型在不使用机器学习算法的情况下,可以给出一个容易理解的用户流失预测,以便我们对将要离开的用户有一个相当准确的洞察。

1、 用户活跃的操作性定义

在我们正式开始预测用户流失率之前,我们需要记录用户的历史活跃情况。做这个的目的在于,了解用户是否在使用我们的产品或服务。那么,问题就来了,用户的“活跃”该做怎样的操作性定义(即根据可观察、可测量、可操作的特征来界定变量含义的方法)?实际上,“用户活跃”的定义取决于你的业务背景,跟产品或者服务具体场景密切相关,不同类型的产品对“用户活跃”有不同的定义。

以新浪微舆情的“信息监测”为例,它是一款订阅型的社会化大数据产品,用户通过设置各种关键词组合来检索相关信息,然后选择邮件或者客户端订阅,通过自定义的接收频次来准时收取订阅信息。

对于这款大数据产品来说,“用户活跃”可以这样定义—如果一个用户是活跃的,那么,ta在指定时间段内(分析的时间单位取决于分析者对业务的理解,可以是天、周、月、季度或年),应该包含如下付费、使用或者互动行为:

该用户对“信息监测”的订阅尚未过期;

该用户在web端或者移动端登录产品页面;

该用户使用了产品的部分或全部功能,如基于信息源或者地域的定向监测功能;

该用户在此期间产生了一定消费,如文本数据下载、订阅续费、定制报告等;

该用户在此期间对该产品有各种反馈,包括投诉。

对于这款产品来说,以月份为单位来分析用户行为是很有意义的—因为该产品最短的订阅期是一个月,最长的订阅期是一年。

一旦清晰的界定了“用户活跃”的定义,我们就可以用这些操作性定义来对每个月份的用户(不)活跃情况进行编码,利用二进制值(0,1)—假如在X月份,用户是活跃的,将ta的活跃值设定为1,否则设定为0。

2 、建立“用户不活跃档案”

现在,对于每位用户,我们有了一个以月为单位的“活跃标记”,接下来我们以此为基础,建立起“用户不活跃档案”。这意味着,对于每个用户,笔者想对他们连续不活跃的月份数进行计数统计。

在这里,笔者选择了一年的“分析窗口”(也就是把12个月作为分析的时间范围),将“活跃档案”和“不活跃档案”以表格的形式呈现—蓝色表单显示每位用户在各个月份上的活跃记录,绿色表单则显示用户的不活跃记录。根据用户在此时间段内可能出现的活跃情形,笔者枚举出3种典型用户,如下表所示:

用户A:该用户在刚进入“分析窗口”时是活跃的,然而在5月变得不活跃(也就是说,5月份是第一个不活跃的月份)。接下来,这个用户的不活跃状态持续到了12月,也就一直持续到了“分析窗口”的末尾。因此,从5月到12月,“用户不活跃档案”对用户连续不活跃的月份进行逐月累加的计数统计。

用户B:跟用户A一样,该用户刚开始也是活跃的。不同的是,该用户在3~6月期间是不活跃的,在7月仅维持了一个月的活跃状态, 接着在8月和9月又进入不活跃状态,最后在“分析窗口”的10月,11月和12月又回到活跃状态。

3、在这种情况下

每当用户由不活跃状态返回活跃状态时,前面的不活跃月份计数需要重置。也就是说,当我们再次对该用户的连续不活跃月份进行计数时,需要重新从1开始计数,前面的不活跃月份计数不再累加。

用户C:与上述提及的两类用户不同,该用户刚进入“分析窗口”时,是不活跃的状态。这种情形的发生,可能是用户的订阅早已过期(最好在正式分析前排除这种情形,因为很难处理),或者该用户在“分析窗口”开始前就是不活跃的。因为我们看不到“分析窗口”前的用户活跃情况,所以用户在此之前的活跃状态,我们是不了解的。鉴于此状况,我们对这些月份进行特殊的标记—使用-1标记用户C头几个不活跃的月份。该用户其他的不活跃情形,可以参照前面两类用户方式进行计数。

Note:后面绿色的表单,也就是“用户不活跃档案”,才是我们接下来建立用户流失模型的数据基础。

4、 计算用户流失概率

让我们回顾一下本文的终极目标—计算各个连续不活跃月份数(0-12)下的用户流失概率。也就是说,如果某个用户已经连续X个月不活跃,那么这个用户接下来将要流失的可能性有多大?从数学上来说,我们可以使出贝叶斯公式这个大杀器来计算用户流失率。贝叶斯公式尽管是一个数学公式,但它的原理不要数字也能明了。如果,你看到一个人总是做一些好事,则那个人多半会是一个好人。该数学公式包含着朴素的真理:

当你不能准确知悉一个事物的本质时,你可以依靠与事物特定本质相关的事件出现的多少去判断其本质属性的概率。用数学语言表达就是:支持某项属性的事件发生得愈多,则该属性成立的可能性就愈大。它的数学形式如下:

关于用户流失,运营不可不知的数据处理方法

在这里,A和B都代表事件(Event),同时P(B)≠0。P(A)和P(B) 分别代表A和B的先验概率或边缘概率。之所以称为”先验”是因为它不考虑任何A(B)方面的因素。P(A|B)是已知B发生后A的条件概率,也由于得自B的取值而被称作A的后验概率。P(B|A)是已知A发生后B的条件概率,也由于得自A的取值而被称作B的后验概率。

大家要根据不同的标准来划分用户群体会对实际业务更有意义,我们可以根据用户价值来划分,然后对每一个群体进行流失的预测。

文章来源:香槟运营

【转载说明】   若上述素材出现侵权,请及时联系我们删除及进行处理:8088013@qq.com

评论

相关文章推荐

SELECT dw_posts.ID,dw_posts.post_title,dw_posts.post_content FROM dw_posts INNER JOIN dw_term_relationships ON (dw_posts.ID = dw_term_relationships.object_id) WHERE 1=1 AND dw_posts.ID not in (223921) AND(dw_term_relationships.term_taxonomy_id = 410 ) AND dw_posts.post_type = 'post' AND (dw_posts.post_status = 'publish') GROUP BY dw_posts.ID ORDER BY RAND() LIMIT 0, 5

京ICP备15063977号-2 © 2012-2018 aiyingli.com. All Rights Reserved. 京公网安备 11010102003938号